Concerted action of activation-induced cytidine deaminase and uracil-DNA glycosylase reduces covalently closed circular DNA of duck hepatitis B virus.

نویسندگان

  • Sajeda Chowdhury
  • Kouichi Kitamura
  • Miyuki Simadu
  • Miki Koura
  • Masamichi Muramatsu
چکیده

Covalently closed circular DNA (cccDNA) forms a template for the replication of hepatitis B virus (HBV) and duck HBV (DHBV). Recent studies suggest that activation-induced cytidine deaminase (AID) functions in innate immunity, although its molecular mechanism of action remains unclear, particularly regarding HBV restriction. Here we demonstrated that overexpression of chicken AID caused hypermutation and reduction of DHBV cccDNA levels. Inhibition of uracil-DNA glycosylase (UNG) by UNG inhibitor protein (UGI) abolished AID-induced cccDNA reduction, suggesting that the AID/UNG pathway triggers the degradation of cccDNA via cytosine deamination and uracil excision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uracil DNA Glycosylase Counteracts APOBEC3G-Induced Hypermutation of Hepatitis B Viral Genomes: Excision Repair of Covalently Closed Circular DNA

The covalently closed circular DNA (cccDNA) of the hepatitis B virus (HBV) plays an essential role in chronic hepatitis. The cellular repair system is proposed to convert cytoplasmic nucleocapsid (NC) DNA (partially double-stranded DNA) into cccDNA in the nucleus. Recently, antiviral cytidine deaminases, AID/APOBEC proteins, were shown to generate uracil residues in the NC-DNA through deaminati...

متن کامل

Associations between activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like cytidine deaminase expression, hepatitis B virus (HBV) replication and HBV-associated liver disease (Review)

The hepatitis B virus (HBV) infection is a major risk factor in the development of chronic hepatitis (CH) and hepatocellular carcinoma (HCC). The activation‑induced cytidine deaminase (AID)/apolipoprotein B mRNA editing enzyme, catalytic polypeptide‑like (APOBEC) family of cytidine deaminases is significant in innate immunity, as it restricts numerous viruses, including HBV, through hypermutati...

متن کامل

Asymmetric modification of HBV genomes by an endogenous cytidine deaminase inside HBV cores informs a model of reverse transcription.

Cytidine deaminases inhibit replication of broad range of DNA viruses by deaminating cytidines on single stranded DNA to generate uracil. While several lines of evidence have revealed HBV genome editing by deamination, it is still unclear which nucleic acid intermediate of HBV is modified. Hepatitis B virus has a relaxed circular double-stranded DNA (rcDNA) genome that is reverse transcribed wi...

متن کامل

Therapeutic Direction and Issues Regarding HBV Infection

With up to 400 million affected people worldwide, chronic hepatitis B virus (HBV) infection is still a major health care problem. During the last decade, several novel therapeutic approaches have been developed and evaluated. In most regions of the world, interferon-α (IFN-α), and nucleos(t)ide analogues are currently approved. Despite major improvements, none of the existing therapies is optim...

متن کامل

Endogenous expression of activation-induced cytidine deaminase in cell line WEHI-231.

Because of its susceptibility to apoptosis on Ag receptor cross-linking, cells of the mouse cell line WEHI-231 have been classified as immature B cells. Surprisingly, however, the cell line expresses activation-induced cytidine deaminase, the enzyme that mediates hypermutation and Ig class switch recombination in activated B cells. Although both cDNA sequence and protein expression of activatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 587 18  شماره 

صفحات  -

تاریخ انتشار 2013